Logo
pyAgrum 1.8.1 on Jupyter

Tutorials

  • ▶ Tutorial
    • ▷ Tutorial
    • ▷ Tutorial2
  • ▶ Examples
    • ▷ Asthma
    • ▷ Kaggle Titanic
    • ▷ Naive Credit Default Modeling
    • ▷ Causality And Learning
    • ▷ Sensitivity Analysis Using Credal Networks
    • ▷ Quasi Continuous
    • ▷ Parameters Learning With Pandas
    • ▷ Bayesian Beta Coin
  • ▶ Models
    • ▷ Influence Diagram
    • ▷ Dynamic Bn
    • ▷ Markov Random Field
    • ▷ Credal Networks
    • ▷ O3PRM
  • ▶ Learning
    • ▷ Structural Learning
    • ▷ Learning Classifier
    • ▷ Learning And Essential Graphs
    • ▷ Dirichlet Prior And Weigthed Database
    • ▷ Parametric Em
    • ▷ Chi2 And Scores From Bn Learner
  • ▶ Inference
    • ▷ Graphical Inference
    • ▷ Relevance Reasoning
    • ▷ Lazy Propagation Advanced Features
    • ▷ Approximate Inference
    • ▷ Sampling Inference
  • ▶ Classifier
    • ▷ Learning
    • ▷ Discretizer
    • ▷ Compare Classifiers With Sklearn
    • ▷ Cross Validation
    • ▷ Binary And Nary Classifier From Bn
  • ▶ Causality
    • ▷ Tobacco
    • ▷ Simpson Paradox
    • ▷ Multinomial Simpson Paradox
    • ▷ Do Calculus Examples
    • ▷ Counterfactual
  • ▶ Applications
    • ▷ Ipywidgets
  • ▶ Tools
    • ▷ Potentials
    • ▷ Aggregators
    • ▷ Explain
    • ▷ Kl For BNs
    • ▷ Comparing Bn
    • ▷ Colouring And Exporting BNs
    • ▷ Config For PyAgrum
pyAgrum

Comparing classifiers (including Bayesian networks) with scikit-learn¶

In this notebook, we use the skbn module to insert bayesian networks into some examples from the scikit-learn documentation (that we refer).

Creative Commons License aGrUM interactive online version
In [1]:
import pyAgrum as gum
import pyAgrum.lib.notebook as gnb
from pyAgrum.skbn import BNClassifier

Binary classifiers¶

In [2]:
# From https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)
# Code source: Gael Varoquaux
#              Andreas Muller
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause
In [3]:
import numpy as np

import matplotlib.pyplot as plt
import matplotlib.patheffects as pe

from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
In [4]:
# the data
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                           random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
            make_circles(noise=0.2, factor=0.5, random_state=1),
            linearly_separable
            ]
datasets_name=['Moons ',
               'Circle',
               'LinSep']
In [5]:
def showComparison(names,classifiers,datasets,datasets_name):# the results
    bnres=[None]*len(datasets_name)
    h = .02  # step size in the mesh
    fs=6

    figure = plt.figure(figsize=(10, 4))
    i = 1
    # iterate over datasets
    for ds_cnt, ds in enumerate(datasets):
        print(datasets_name[ds_cnt]+' : ',end='')
        # preprocess dataset, split into training and test part
        X, y = ds
        X = StandardScaler().fit_transform(X)
        X_train, X_test, y_train, y_test = \
            train_test_split(X, y, test_size=.4, random_state=42)

        x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))

        # just plot the dataset first
        cm = plt.cm.RdBu
        cm_bright = ListedColormap(['#FF0000', '#0000FF'])
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
        if ds_cnt == 0:
            ax.set_title("Input data",fontsize=fs)
        ax.set_ylabel(datasets_name[ds_cnt])

        # Plot the training points
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
                   edgecolors='k',marker=".")
        # Plot the testing points
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,
                   edgecolors='k',marker=".")
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        i += 1

        # iterate over classifiers
        for name, clf in zip(names, classifiers):
            print(".",end="",flush=True)
            ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
            clf.fit(X_train, y_train)
            score = clf.score(X_test, y_test)

            # Plot the decision boundary. For that, we will assign a color to each
            # point in the mesh [x_min, x_max]x[y_min, y_max].
            if hasattr(clf, "decision_function"):
                Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
            else:
                Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

            # Put the result into a color plot
            Z = Z.reshape(xx.shape)
            ax.contourf(xx, yy, Z, cmap=cm, alpha=.7)

            # Plot the training points
            #ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
            #           edgecolors='k', alpha=0.2,marker='.')
            # Plot the testing points
            ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                       edgecolors='k',marker='.')

            ax.set_xlim(xx.min(), xx.max())
            ax.set_ylim(yy.min(), yy.max())
            ax.set_xticks(())
            ax.set_yticks(())
            if ds_cnt == 0:
                ax.set_title(name,fontsize=fs)
            ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
                    size=12, horizontalalignment='right',color="white",
                    path_effects=[pe.withStroke(linewidth=2, foreground="black")])
            i += 1
        bnres[ds_cnt]=gum.BayesNet(classifiers[-1].bn)
        print()
        
    plt.tight_layout()
    plt.show()
    
    return bnres
In [6]:
# the classifiers
names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
         "Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
         "Naive Bayes", "QDA","BNClassifier"
        ]

classifiers = [
  KNeighborsClassifier(3),
  SVC(kernel="linear", C=0.025),
  SVC(gamma=2, C=1),
  GaussianProcessClassifier(1.0 * RBF(1.0)),
  DecisionTreeClassifier(max_depth=5),
  RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
  MLPClassifier(alpha=1, max_iter=1000),
  AdaBoostClassifier(),
  GaussianNB(),
  QuadraticDiscriminantAnalysis(),
  BNClassifier(learningMethod='MIIC', prior='Smoothing', priorWeight=1, discretizationNbBins=5,
               discretizationStrategy="uniform", # 'kmeans', 'uniform', 'quantile', 'NML', 'MDLP', 'CAIM', 'NoDiscretization'
               usePR=False) 
]

bnres=showComparison(names,classifiers,datasets,datasets_name)
Moons  : ...........
Circle : ...........
LinSep : ...........
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <cc:Work> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/> <dc:date>2023-05-24T15:10:16.396716</dc:date> <dc:format>image/svg+xml</dc:format> <dc:creator> <cc:Agent> <dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title> </cc:Agent> </dc:creator> </cc:Work> </rdf:RDF> <style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>