Just-in-Time preemptive scheduling around a common due date

Francis Sourd

LIP6
CNRS - Université Paris 6

GOThA
Paris - 15 avril 2005
Preemption and JIT scheduling

- n operations (processing time p_i).
- **Preemption** is allowed.
- Find a **one-machine schedule** that minimize the total cost.
- How to define **job costs** to model the **Just-in-Time** philosophy?
Early-tardy completion

- Earliness-tardiness penalties $\alpha_i E_i + \beta_i T_i$
Early-tardy completion

- Earliness-tardiness penalties $\alpha_i E_i + \beta_i T_i$

- But naive preemption...

- ...results in earliness relaxation
Position costs

- Cost functions $f_i : [0, \infty) \rightarrow \mathbb{R}$
- Cost $f_i(t)dt$ when i is processed between t and $t + dt$.

Cost of job i is

$$\int_0^\infty x_i(t)f_i(t)dt$$

$x_i(t)$ indicator function of the processing of job i.

$$\int_0^\infty x_i(t)dt = p_i$$
Objective function

- Minimize

\[\sum_{i=1}^{n} \int_{0}^{\infty} x_i(t)f_i(t) dt \]

- Problem notation

1|pmtn| \(\sum f \)
Preemption at integer time points

[Sourd and Kedad-Sidhoum, JoS 2003]

- interruption only at integer time points
- tasks divided into unit execution time operations
- costs $c_{it} = \int_{t}^{t+1} f_i(t) dt$ for scheduling a UET operation of job i in $[t, t+1)$

but the size of the relaxed problem is pseudopolynomial
Dual problem

\[\min \sum_{i=1}^{n} \int_{0}^{\infty} x_i(t) f_i(t) dt \]

s.t. \[\int_{0}^{\infty} x_i(t) dt = p_i \]
\[\sum_i x_i(t) \leq 1 \]
Dual problem

\[
\min \sum_{i=1}^{n} \int_{0}^{\infty} x_i(t) f_i(t) dt \\
\text{s.t.} \quad \int_{0}^{\infty} x_i(t) dt = p_i \times u_i \\
\quad \sum_{i} x_i(t) \leq 1
\]
Dual problem

\[L(u) = \min \sum_{i=1}^{n} \int_{0}^{\infty} x_i(t)(f_i(t) - u_i)dt + \sum_i u_i p_i \]

s.t.

\[\sum_i x_i(t) \leq 1 \]
Dual problem

\[L(u) = \min \sum_{i=1}^{n} \int_{0}^{\infty} x_i(t)(f_i(t) - u_i)dt + \sum u_i p_i \]
\[\text{s.t.} \]
\[\sum x_i(t) \leq 1 \]
Dual problem

[Sourd, INFORMS JoC, 2004]

\[\pi_2(u) = \pi_1(u) + \pi_3(u) \]

- **No duality gap**
- **At the optimum,**
 \[(\pi_1(u), \pi_2(u), \ldots, \pi_n(u)) = (p_1, p_2, \ldots, p_n) \]
- **Polynomial** with the ellipsoid method
Motivation

- Study special easier cases
- Better understanding of this new criterion
- Efficient strongly polynomial algorithms
Today’s problem

- Common due date d for each job
- Cost function

$$f_i(t) = \alpha_i \max(0, d - t) + \beta_i \max(0, t - d)$$
No earliness — $d = 0$

- $f_i(t) = \beta_i t$
- Larger slope first
No earliness — $d = 0$

- $f_i(t) = \beta_i t$
- Larger slope first
No earliness — \(d = 0 \)

- \(f_i(t) = \beta_i t \)
- Larger slope first
No earliness — $d = 0$

- $f_i(t) = \beta_i t$
- Larger slope first
No earliness — $d = 0$

- $f_i(t) = \beta_i t$
- Larger slope first
Basic properties of the solution

- An optimal schedule
 - starts at $t \leq d$
 - ends at $t + P \geq d$ with $P = \sum_i p_i$
 - no idle time in between the tasks
- the tardy parts of jobs are sorted according to the β_i
- the early parts of jobs are sorted according to the α_i
Rationale of the algorithm

- Let $f(t)$ be the optimal cost for scheduling all the jobs in $[t, t + P)$
- f is convex.
- Minimize the function f when t varies.
- Start with $t = d$ (jobs are all late).
- Compute $f(t - \epsilon)$ from $f(t)$ by maintaining the primal and dual solutions.
- End when the minimum of f is reached.
From $f(t)$ to $f(t - \epsilon)$

Lemma

Only one job (i^) is transferred when t decreases.*

Sketch of the proof.

- The jobs in \bar{E} are **completely** early.
- The jobs in \bar{T} are **completely** tardy.
- The dual variables of the job in between i^* do not change.
Selecting the transfered job

- The proof of the previous lemma shows how to select the transfered job according to the dual problem.
Selecting the transfered job

- The proof of the previous lemma shows how to select the transfered job according to the dual problem.
- A primal approach computationally more efficient
Selecting the transferred job

- The proof of the previous lemma shows how to select the transferred job according to the dual problem.
- A primal approach computationally more efficient
- **Marginal transfer cost**
 - if job i is transferred
 \[
 f(t - \epsilon) = f(t) + m_i \epsilon + o(\epsilon)
 \]
 - $m_i = \sum_j \min(\alpha_j, \alpha_i) p_j^– - \min(\beta_j, \beta_i) p_j^+$
- Select the job with the **smallest** marginal transfer cost.
- The variation of m_i is (piecewise) linear.
 \[
 m_i(t - \epsilon) = m_i(t) + (\min(\alpha_i, \alpha_i^*) + \min(\beta_i, \beta_i^*)) \epsilon
 \]
Events

- **Discretize** the “continuous” procedure
- **Classes of events**
 1. Transfer if job i^* completed
 2. Another job becomes critical
 3. $t = 0$
 4. Minimum of f is reached
- As the variation of the marginal costs are linear, the distance between the current event and the next event can be easily computed.
Number of events

Lemma

The transfer of a job can only be interrupted by a wholly late job.

Corollary

There are $O(n)$ events.
Complexity

Theorem

The algorithm runs in $O(n^2)$ time.

Proof.

- There are $O(n)$ events
- Marginal transfer costs are updated in $O(n)$ time.
- Next event is calculated in $O(n)$ time.
Conclusion

▶ An $O(n^2)$ algorithm for the common due date problem
▶ Release dates, deadlines ?
▶ Non common due dates ?
▶ Lower bound for the non-preemptive problem.