Modulo Scheduling with Regular Unwinding

Benoît Dupont de Dinechin

March 30, 2004

We introduce a new technique for modulo scheduling, based on the unwinding of the modulo scheduling problem, and the acyclic scheduling of the unwinded problem under an additional constraint of regularity. Given λ, the modulo schedule initiation interval, a regular unwinded schedule is such that two successive instances of any operation are scheduled at least λ cycles apart. For a given λ, we establish the equivalence between the modulo schedules, and the regular unwinded schedules of suitable size.

A main benefit of the regular unwinding technique is the re-formulation of the modulo scheduling problems in the classic framework of acyclic scheduling. In particular, we introduce new modulo scheduling problem relaxations that are solvable in pseudo-polynomial time. These results are obtained by combining regular unwinding with the time-constrained instruction scheduling relaxation of Leung, Palem & Pnueli [2].

Modulo scheduling [3, 1] is an instruction scheduling technique used for software pipelining inner program loops. In modulo scheduling problems, a set of operations $\{O_i\}_{1 \leq i \leq n}$ is repeatedly executed with a period of λ cycles, the initiation interval. Precisely, we denote $\{\sigma_i\}_{1 \leq i \leq n}$ the schedule dates, and the execution is constrained as follows:

- Uniform dependence constraints denoted $O_i \xrightarrow{\alpha^I_{ij}, \beta^I_{ij}} O_j$: for each such dependence, a valid modulo schedule satisfies $\sigma_i + \alpha^I_{ij} - \lambda \beta^I_{ij} \leq \sigma_j$. The latency α^I_{ij} and the distance β^I_{ij} of the dependences are non negative integers. The carried dependences are such that $\beta^I_{ij} > 0$.

- Modulo resource constraints: each operation O_i requires $\bar{b}_i \geq 0$ cumulative resources for all the time intervals $[\sigma_i + k\lambda, \sigma_i + k\lambda + p_i - 1], k \in \mathbb{Z}$, and the total resource use at any time
must not exceed \vec{B}. The positive integer value p_i is the processing time of operation O_i.

References

