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Abstract In this paper we propose simple yet efficient version of the two-phase Pareto
local search (2PPLS) for solving the biobjective traveling salesman problem (bTSP). In
the first phase the powerful Lin–Kernighan heuristic is used to generate some high quality
solutions being very close to the Pareto front. Then Pareto local search is used to generate
more potentially Pareto efficient solutions along the Pareto front. Instead of previously used
method of Aneja and Nair we use uniformly distributed weight vectors in the first phase. We
show experimentally that properly balancing the computational effort in the first and second
phase we can obtain results better than previous versions of 2PPLS for bTSP and at least
comparable to the state-of-the art results of more complex MOMAD method. Furthermore,
we propose a simple extension of 2PPLS where some additional solutions are generated by
Lin–Kernighan heuristic during the run of PLS. In this way we obtain a method that is more
robust with respect to the number of initial solutions generated in the first phase.

Keywords Multiobjective optimization · Pareto local search · Traveling salesman problem

1 Introduction

In order to generate good approximations of the Pareto fronts of hard multiobjective opti-
mization problems, each multiobjective metaheuristic has to achieve two different goals. The
solutions generated by such method should both approach the Pareto front and cover all
areas along this front. In many methods a single mechanism is expected to assure both goals.
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For example, many evolutionary methods use single mechanism of Pareto ranking to both
approach and search along the Pareto front (Deb et al. 2000). However, it is quite natural to
expect that different techniques may be the best for achieving the two different goals and
that the importance of these goals changes at different stages of the optimization process.
At the initial iterations of the algorithm when the current population of solutions is far from
the Pareto front the main goal is to move towards this front. In later iterations when the
population is composed of solutions very close to the Pareto front the main goal is to search
for new solutions along this front.

In fact, combination of two differentmechanisms for search towards and along Pareto front
was used in a number of successful methods even if it was not stated explicitly. Lust and
Teghem (2010) proposed the two-phase Pareto local search (2PPLS) method that combines
Pareto local search (Angel et al. 2004; Paquete and Stutzle 2006; Paquete et al. 2007) with
efficient problem-specific local search heuristics, e.g. Lin and Kernighan (1973) for traveling
salesman problem (TSP; Laporte and Osman 1995). The local search heuristic is used to
optimize scalarizing functions with various weights. In this way, a starting population of
solutions being very close to the Pareto front is generated. Then, the Pareto local search
(PLS) is used to search for new solutions along Pareto front. Pareto local search works with a
population of potentially efficient solutions, i.e. solutions that are not dominated by any other
solution generated so far. For each of these solutions its neighborhood is searched for all new
potentially efficient solutions. New potentially efficient solutions enter the current population
while dominated solutions are removed. Standalone PLS starting from random solutions is
very inefficient since it spends a lot of time generating large numbers of solutions being still
very far from the Pareto front. 2PPLS, however, it is at present one of the best methods for
multiobjective knapsack (Lust and Teghem 2012), bTSP ( Lust and Teghem 2010; Lust and
Jaszkiewicz 2010) and set covering problem (Lust and Tuyttens 2014) due to combination
of the two search mechanisms.

The concept of combining mechanisms for search towards and along Pareto front was
also underlying the idea of the Pareto memetic algorithm with path relinking proposed
by Jaszkiewicz and Zielniewicz (2009) for bTSP. The algorithm uses special multiobjective
path relinking evolutionary operator generatingmultiple potentially Pareto efficient solutions
along a path linking two recombined solutions, while typical crossover operators generate a
single solution only. It was observed that although this operator decreases the performance
of the optimization of a single scalarizing function (i.e. deteriorates the search capability
towards the Pareto front), the overall performance is improved due to a better search along
Pareto front.

The idea of combination of search towards and along Pareto front was stated explicitly
by Lara et al. (2010) in hill climber with sidestep (HCS)—a new local search procedure that
automatically switches its modes of operation. If the current solution is far from the Pareto
front HCS tries to improve it on all objectives to approach the Pareto front. If the current
solution is already close to the Pareto front the method automatically switches to the search
along this front. The method has been applied to continuous problems but the general idea
could be used in case of combinatorial optimization as well.

In this paper we propose a new version of 2PPLS for solving the bTSP using the powerful
Lin–Kernighan heuristic. Instead of the method of Aneja and Nair (1979) used in Lust and
Teghem (2010) and Lust and Jaszkiewicz (2010) we use uniformly distributed weight vectors
in the first phase. The method of Aneja and Nair is an exact method for the generation of all
supported non-dominated points, i.e. points in the objective space that correspond to optima
of some weighed linear scalarizing functions. The method of Aneja and Nair assumes the
use of an exact single objective optimizer. It recursively searches for new supported non-
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dominated points in gaps between two neighbor points. If no new point is found between
two points, this gap is not searched any more. However, if a heuristic, even a very good one,
is used instead of the exact optimizer, the method ceases to be exact and may be stopped
prematurely.

To avoid this drawback and to be able to generate more solutions in the first phase than the
method of Aneja and Nair we use a set of uniformly distributed weight vectors. Each weight
vector defines aweighted linear scalarizing function, i.e. weighed sumof the objectives. Since
the problem of optimizing the weighed sum corresponds to the standard single objective TSP
the Lin–Kernighan heuristic could be used to solve it. Furthermore, an interesting observation
is that suboptimal solutions generated by Lin–Kernighan heuristic may correspond to some
non-supported non-dominated points that could not be generated by an exact optimizer.

The number of uniform weight vectors becomes a new parameter of 2PPLS. We show
experimentally that properly balancing the computational effort in the first and second phase
with constant total running time we can obtain results better than previous versions of 2PPLS
for bTSP and at least comparable to state-of-the art results of more complex MOMAD
method (Liangjun et al. 2014).

Furthermore, in order to reduce the sensitivity with respect to the number of uniform
weight vectors, we propose a simple extension of 2PPLS where some additional solutions
are generated by Lin–Kernighan heuristic during the run of PLS. The additional solutions are
obtained using randomweight vectors. Themethod obtained in this way does not improve the
best results but is much more robust with respect to the number of initial solutions generated
in the first phase. This improved behavior could be explained by the fact that this method
makes a more smooth shift from the search towards and along Pareto front, since it still
generates some new solutions being very close to the Pareto front during the run of PLS.

The paper is organized in the following way. In the next section, basic definitions are
presented. The new methods and state-of-the-art MOMAD method used in the experiments
are described in the third section. Then the design of the computational experiment is pre-
sented in fourth section. In the fifth section, the results of the experiments are presented and
discussed. Finally, we present conclusions and perspectives for further research.

2 Basic definitions

2.1 Multiobjective combinatorial optimization

A general multiobjective combinatorial optimization problem is defined as follows:

“minimize
x

” y(x) = Cx

subject to x : Ax ≤ b
x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n
C ∈ N

p×n −→ p objective functions, k = 1, . . . , p
A ∈ N

m×n and b ∈ N
m×1 −→ m constraints, j = 1, . . . ,m

A combinatorial structure is associated to this problem, which can be path, tree, flow, tour,
etc.

We denote by X the feasible set in the decision space, defined by X = {x ∈ {0, 1}n :
Ax ≤ b}. The image of the feasible set in the objective space is called Y and is defined by
Y = y(X ) = {Cx : x ∈ X } ⊂ N

p ⊂ R
p . Due to the contradictory features of the objectives,
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there does not exist a feasible solution simultaneously minimizing each objective (that is
why the word minimize is placed between quotation marks) but a set of feasible solutions
called efficient solutions. We present below some definitions that characterize these efficient
solutions.

We first define the dominance relation of Pareto:

Definition 1 Dominance relation of Pareto: we say that a vector u = (u1, . . . , u p) dominates
a vector v = (v1, . . . , vp) if, and only if, uk ≤ vk ∀ k ∈ {1, . . . , p} ∧ ∃ k ∈ {1, . . . , p} :
uk < vk . We denote this relation by u ≺ v.

We can now define an efficient solution, a non-dominated point, the efficient set and the
Pareto front.

Definition 2 Efficient solution: a feasible solution x∗ ∈ X is called efficient if there does
not exist any other feasible solution x ∈ X such as y(x) ≺ y(x∗).

Definition 3 Non-dominatedpoint: the image y(x∗) in objective space of an efficient solution
x∗ is called a non-dominated point.

Definition 4 Efficient set: the efficient set denoted byXE contains all the efficient solutions.

Definition 5 Pareto front: the image of the efficient set in Y is called the Pareto front (or
non-dominated frontier/set), and is denoted by YN .

We can distinguish two types of efficient solutions: supported efficient solutions and non-
supported efficient solutions (Ehrgott 2005).

Definition 6 Supported efficient solutions: supported efficient solutions are optimal solu-
tions of a weighted sum single-objective problem

minimize

{ p∑
k=1

λk yk(x) : x ∈ X

}

for some weight vector � > 0, that is with all positive components (λk > 0,∀ k ∈
{1, . . . , p}). The image in the objective space of the supported efficient solutions, called
supported non-dominated points, are located on the “lowerleft boundary” of the convex hull
of Y (conv Y), that is they are non-dominated points of (conv Y)+R

p
+. We can obtain all

supported solutions by varying the weight set � and by solving the corresponding weighted
sum single-objective problems.

Definition 7 Non-supported efficient solutions: non-supported efficient solutions are effi-
cient solutions that are not optimal solutions of any weighted sum single-objective problem
with� > 0.Non-supported non-dominated points are located in the interior of (convY)+R

p
+.

In this work, if two potentially efficient solutions x1, x2 ∈ X are equivalent, that is if
y(x1) = y(x2), only one of these solutions will be retained (therefore to each potentially
non-dominated point will correspond only one potentially efficient solution).

We also define weighted Chebycheff scalarizing functions:

Definition 8 Weighted Chebycheff scalarizing function is defined in the following way:

s∞(x, y0,�) = max
k=1,...,p

{λk (yk(x) − y0k )}

where y0 is a reference point, � = [λ1, . . . , λp] is a weight vector such that λk ≥ 0 ∀k.
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Each weighted Chebycheff scalarizing function has at least one global optimum (mini-
mum) belonging to the set of efficient solutions. For each efficient solution x there exists a
weighted Chebycheff scalarizing function s∞ such that x is a global optimum (minimum) of
s∞ [see Steuer (1986), ch. 14.8].

2.2 The biobjective traveling salesman problem

Given a set {v1, v2, . . . , vN } of cities and two costs c1(vi , v j ) and c2(vi , v j ) between each
pair of distinct cities {vi , v j } (with i 
= j), the biobjective traveling salesman problem (bTSP)
consists of finding a solution, that is an order π of the cities, so as to minimize the following
costs (k = 1, 2):

“minimize”yk(π) =
N−1∑
i=1

ck(vπ(i), vπ(i+1)) + ck(vπ(N ), vπ(1))

Hence, two values are associated to a tour realized by a traveling salesman, who has to
visit each city exactly once and to return to the starting city. We are interested here only in
the symmetric biobjective traveling salesman problem (bTSP), that is ck(vi , v j ) = ck(v j , vi )

for 1 ≤ i, j ≤ N . In this paper, we will use different types of biobjective instances of size
going from 100 to 1000. Four different types of instances are used in the computational
experiments:

• Euclidean instances The costs between the edges correspond to the Euclidean distance
between two points in a plane. Such instances are denoted by Kro…and Eucl…

• Random instances The costs between the edges are randomly generated from a uniform
distribution.

• Mixed instances The first cost corresponds to the Euclidean distance between two points
in a plane and the second cost is randomly generated from a uniform distribution.

• Clustered instances The points are randomly clustered in a plane, and the costs between
the edges correspond to the Euclidean distance.

These data have been used by different authors to experiment multiobjective methods.
They are available on http://www-desir.lip6.fr/~lustt/.

3 Methods

We first present PLS that is used in all methods studied in this paper. We then present two
different versions of 2PPLS, called U2PPLS and R2PPLS. We also present an extension of
U2PPLS, called U2PPLS+R, and theMOMADmethod (all the methods studied in this paper
will be compared to MOMAD).

3.1 Pareto local search (PLS)

We present in this section the algorithm of PLS that will be used in the different 2PPLS
methods presented hereafter. The potentially efficient set obtained will be called X̂E . The
general algorithm of our version of PLS works as follows (see Algorithm 1). Two parameters
are needed: an initial population P composedof potentially efficient solutions and amaximum
running time T .

The approximation X̂E is first updated with the population P . Then, neighbors p′ of the
solutions p ∈ P are generated. If the image of a neighbor p′ is not dominated and not equal
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to the current solution p, we update the approximation X̂E with p′. The procedure to update
X̂E simply consists in adding p′ to X̂E if it is non-dominated with respect to any solution in
X̂E and to remove all solutions of X̂E that could be found dominated by p′. This procedure
returns true if the new solution has been added and false otherwise. If the new solution p′ has
been added to X̂E , we add it to an auxiliary population Pa for further exploration. Once the
neighborhood of all the solutions p of P have been explored, we copy Pa into P and we start
again the process with P , until P is empty (which happens when a Pareto local optimum has
been obtained) or the maximum running time allowed has been reached.

Algorithm 1 PLS
Parameter ↓: Maximum running time T
Parameter �: An initial population P composed of potentially efficient solutions

- -| Initialization of X̂E with P
X̂E ← P
- -| Initialization of an auxiliary population Pa
Pa ← ∅
while Total running time is lower that T and P 
= ∅ do
- -| Generation of all the neighbors p′ of all the solutions p ∈ P
for all p ∈ P do
for all p′ ∈ N (p) do
if y(p) ⊀ y(p′) and y(p) 
= y(p′) then
if Update(X̂E �,p′ ↓) then

Pa ← Pa + p′
- -| P is composed of the new non-dominated solutions
P ← Pa
- -| Re-initialization of Pa
Pa ← ∅

whereN (p) denotes the neighborhood of p and Update() updates the set of potentially efficient solutions
X̂E .

3.2 U2PPLS

The pseudo-code of U2PPLS is given by Algorithm 2.

1. Phase 1 This phase focuses on the search towards the Pareto front. The goal is to find a
number of heuristic solutions being very close to the Pareto front and well dispersed over
this front. These solutions are generated by solving weighted sum single-objective prob-
lems obtained by applying a linear aggregation of the objectives. In U2PPLS method we
modify thefirst phase of the original 2PPLS. Insteadof using themethodofAneja andNair
(1979)weuse a predefined set of uniformlydistributedweight vectors, i.e. vectorswith the
following values (0, 1), (1/(L−1), 1−1/(L−1)), (2/(L−1), 1−2/(L−1)), . . . , (1, 0)
where L is the number of weight vectors. Each single-objective problem is solved with
one of the best heuristics for the single-objective TSP: the Lin–Kernighan heuristic (Lin
and Kernighan 1973). We use the chained Lin–Kernighan version of Applegate (2003)1,
as used in 2PPLS and MOMAD.

2. Phase 2 This phase focuses on the search along the Pareto front. The goal is to find some
additional approximately efficient solutions located along Pareto front. In this phase,

1 The source code of the this heuristic is available on http://www.math.uwaterloo.ca/tsp/concorde.
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Algorithm 2 U2PPLS
Parameter ↓: The number of weight vectors L
Parameter ↓: Maximum running time T
Parameter ↑: An approximation X̂E of the efficient set

- -| Start of Phase 1
for (i = 0; i < L; i + +) do

λ1 ← 1 − (i/(L − 1))
λ2 ← 1 − λ1
LKTSP(�, x)
Update(X̂E �,x ↓)

- -| Start of Phase 2
PLS(T ,X̂E )

where LKTSP() denotes Lin–Kernighan heuristic

PLS is used, with the well-known 2-opt neighborhood. However, as generating all the
2-opt moves for each solution of the population will be very time-consuming (

N (N−3)
2

neighbors to generate for each solution), we only consider a small proportion of all the
possible 2-opt moves. Otherwise, large instances could not be solved in a reasonable
time (Lust and Jaszkiewicz 2010). As done in Lust and Jaszkiewicz (2010), candidate
lists for the 2-opt moves are used: the candidate lists are created on the basis of the edges
used by the solutions found during Phase 1 of 2PPLS. More precisely, we explore the set
of candidate edges of Phase 1 (that is the edges used by at least one solution generated
in Phase 1), and for each candidate edge {vi , v j }, we add the city v j to the candidate list
of the city vi .

As it was mentioned above the method of Aneja and Nair ceases to be exact when a
heuristic method is used to optimize weighted sum single-objective problems instead of an
exact solver. In this case the method of Aneja and Nair may stop prematurely and generate
insufficient number of initial solutions. By using a predefined number of weight vectors we
get the control over the number of generated solutions and thus on the computational effort
in the first phase.

3.3 R2PPLS

A potential disadvantage of U2PPLS is that the number of runs of the problem-specific local
search heuristics in Phase 1 has to be defined a priori. In other words it is not possible to stop
the first phase earlier, that is before the local search has been run the predefined number of
times. It is also not possible to continue the first phase performing more runs of local search.
Thus, we test also another approach were the weight vectors used in Phase 1 are generated
randomly. To generate a random weight vector we draw the first weight from range < 0, 1 >

with uniform distribution, and the second weight is set such that the sum of weights is equal
to one. In R2PPLS it is possible to define some dynamic stopping conditions of the first
phase. For example, Phase 1 could be stopped when the observed probability of generating
a new potentially efficient solution falls below some threshold. On the other hand, the use
of random weight vectors may result in a set of solutions less uniformly covering the Pareto
front, and thus being worse starting point to Phase 2. The pseudo-code of R2PPLS is given
by Algorithm 3.
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Algorithm 3 R2PPLS
Parameter ↓: The number L of weight vectors
Parameter ↓: Maximum running time T
Parameter ↑: An approximation X̂E of the efficient set

- -| Start of Phase 1
for (i = 0; i < L; i + +) do

λ1 ← random number drawn from < 0, 1 > with uniform probability
λ2 ← 1 − λ1
LKTSP(�, x)
Update(X̂E �,x ↓)

- -| Start of Phase 2
PLS(T ,X̂E )

3.4 U2PPLS+R

As it was mentioned above, in order to reduce the sensitivity with respect to the number of
uniform weight vectors, we propose a simple extension of U2PPLS where some additional
solutions are generated by Lin–Kernighan heuristic during the run of PLS. After each main
iteration of PLS a number of additional heuristic solutions is generated. The additional
solutions are obtained using randomweight vectors. If the number of uniform weight vectors
used in Phase 1 was set too low, the additional solutions may constitute and additional seed
for PLS, and thus improve the final result of PLS. The pseudo-code of U2PPLS+R is given
by Algorithm 4.

3.5 MOMAD

We compare the proposed methods withMOMAD algorithm (Liangjun et al. 2014) that is, to
our knowledge, state-of-the-art algorithm for the biobjective TSP. Alike U2PPLS, MOMAD
starts with generating a number of initial solutions using uniformly distributed weight vectors
and a high quality problem-specific single objective heuristic to optimize linear scalarizing
functions defined by these weight vectors. Then PLS algorithm with bounded number of
generations is applied. For each of the uniformly distributed weight vectors MOMAD stores
a single solution being very good but not necessarily the best for linear scalarizing function
defined by this weight vector. All such solutions form population PL . Periodically, after some
iterations of PLS, each solution in PL is first perturbed, and then local search is applied to
obtain a new solution. After the perturbation phase population PL is updated by a procedure
that takes into account both quality of the solutions and diversity of PL . Then PLS is applied
again and the phases of perturbation and PLS are repeated several times. For the details of
this algorithm see Liangjun et al. (2014).

In case of bTSP, the authors of MOMAD use Lin–Kernighan heuristic (same version as
in this paper) in the first phase, a double bridge move as perturbation and 2-opt local search.

4 Computational experiments

4.1 Quality indicators

Several indicators have been introduced in the literature to measure the quality of an approx-
imation [see Zitzler et al. (2002) and Hansen and Jaszkiewicz (1998) for instance].
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Algorithm 4 U2PPLS+R
Parameter ↓: The number L of weight vectors
Parameter ↓: The number RD of additional heuristic solutions generated after each main iteration of PLS
Parameter ↓: Maximum running time T
Parameter ↑: An approximation X̂E of the efficient set

- -| Start of Phase 1 (same Phase 1 as U2PPLS)

- -| Start of Phase 2
- -| Initialization of a population P with X̂E
P ← X̂E
- -| Initialization of an auxiliary population Pa
Pa ← ∅
while Total running time is lower that T and P 
= ∅ do
- -| Generation of all the neighbors p′ of all the solutions p ∈ P
for all p ∈ P do
for all p′ ∈ N (p) do
if y(p) ⊀ y(p′) and y(p) 
= y(p′) then
if Update(X̂E �,p′ ↓) then

Pa ← Pa + p′
- -| P is composed of the new non-dominated solutions
P ← Pa
- -| Reinitialization of Pa
Pa ← ∅
- -| Generation of additional heuristic solutions
for (i = 0; i < RD; i + +) do

λ1 ← random number drawn from < 0, 1 > with uniform probability
λ2 ← 1 − λ1
LKTSP(�, x)
Update(X̂E �,x ↓)
Pa ← Pa + x

Let ŶN denote an approximation of YN generated by a multiobjective metaheuristic com-
posed ofmutually non-dominated points. In this paperwe use the following quality indicators:

• The hypervolumeH (to be maximized; Zitzler 1999): the volume of the dominated space
defined by ŶN , limited by a reference point.

• The Rmeasure (normalized between 0 and 1, to bemaximized; Jaszkiewicz 2002, 2004):
evaluation of ŶN by the expected value of the weighted Chebycheff utility function over
a set of normalized weight vectors. In order to estimate the expected value we use an
average over a set of uniform weight vectors (Jaszkiewicz 2002):

R(ŶN ,L) =
∑

�∈L min
y∈ŶN

s∞(y, y0,�)

|L|
where L is a set of uniformly distributed weight vectors.

• The average distance D1 and maximum distance D2 (to be minimized; Czyzak and
Jaszkiewicz 1998; Ulungu et al. 1999) between the points of a reference set and the
points of ŶN , by using the Euclidean distance. Ideally, the reference set is YN itself,
but generally it is not available; otherwise, it can be the non-dominated points existing
among the union of various sets ŶN generated by several methods, or a lower bound of
YN Ehrgott and Gandibleux (2007). The quality indicators are defined in the following
way:
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D1
(ŶN ,RS) =

∑
r∈RS min

y∈ŶN

d(r, y)

|RS|
D2

(ŶN ,RS) = max
r∈RS

min
y∈ŶN

d(r, y)

where RS is a reference set, and d(., .) denotes Euclidean distance. Please note that D1

is also known as inverted generational distance (Coello and Cortés 2005).

4.2 Experiment design

All the algorithms tested in this work have been run on a Intel Core i5-450M CPU, at 2.4
GHz. We present the average of the indicators over 10 executions. The reported running
times correspond to the wall clock time. The running times were limited to be approximately
equal to the running times of MOMAD reported in Liangjun et al. (2014) (the computer
used for the results of MOMAD has the same processor than the computer used to generate
our results). Please note, that the total running time is the parameter of the algorithms 1–3
(U2PPLS, R2PPLS and U2PPLS+R). Therefore, if we increase the number of weight vectors
L , the running time of Phase 1 is increased and the running time of Phase 2 is automatically
decreased. In other words, by changing L we can modify the balance of computational effort
dedicated to Phases 1 and 2. Thus all methods except of 2PPLS use approximately the same
CPU time. The exception of 2PPLS is caused by the fact that in this method running time is
not a free parameter and instead the method uses built-in stopping rules.

For U2PPLS+R, the parameter RD has been experimentally fixed to 25.
To compute the distances D1 and D2 (see Sect. 4.1), reference sets based on the notion

of ideal set (Lust and Teghem 2010) have been generated for all the instances experimented.
The ideal set is defined as the best potential Pareto front that can be produced from the
extreme supported non-dominated points. This is a lower bound of the Pareto front (Ehrgott
and Gandibleux 2007). For generating the extreme supported non-dominated points, we have
used the method of Aneja and Nair coupled with an exact TSP solver (Concorde, available
in http://www.math.uwaterloo.ca/tsp/concorde/). However, for the instances of more than
200 cities, the exact method was too time consuming. Thus, for these instances, we have
generated the extreme supported non-dominated points of the biobjective minimum spanning
tree problem (bMST) associated to the same data than the bTSP. The ideal set is then produced
on the basis of the extreme supported non-dominated points of the bMST. As the biobjective
minimum spanning tree problem is a relaxation of the bTSP, all feasible solutions of the
bTSP remain dominated or equivalent to the solutions of the ideal set of the bMST.

For the computation of the R andH indicators, the reference points are determined accord-
ing to the reference sets (forH, we use the Nadir point of the reference set multiplied by 1.1
and for R, we use the ideal point of the reference set). For the R indicator, the number of
weight sets used is equal to 501 for all instances. This indicator has been normalized between
0 and 1, such that it would obtain 1 for ideal point and 0 for Nadir point.

5 Results

The main results of the computational experiments are presented in Figs. 1, 2, 3 and 4.
The figures show average values of D1 quality measure obtained by U2PPLS, R2PPLS and
U2PPLS+R methods for different number of initial solutions denoted by L and for different
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types of instances. Because of limited space we do not include graphs for other quality
indicators but the results are very similar for all indicators.2 We also show the values of D1

obtained by the original version of 2PPLS in Lust and Jaszkiewicz (2010) and values obtained
byMOMADmethod in Liangjun et al. (2014). Points corresponding to the two latter methods
are located on x-axis at positions corresponding to the number of initial solutions used in these
experiments. Let us remind that the running times of U2PPLS, R2PPLS andU2PPLS+Rwere
limited to be approximately equal to the running times of MOMAD reported in Liangjun

2 Additional figures for other instances and the R indicator can be found on http://www-desir.lip6.fr/~lustt/
Research.html#ProperBalance.
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Fig. 4 MixedAB500–ClusteredAB500

et al. (2014). In other words if we increased the number of weight vectors L , the running
time of Phase 2 was automatically decreased. The main observations are:

• In all cases U2PPLSwas able to generate better results than original 2PPLS if the number
of initial solutions L was set to larger values than the number of initial solutions generated
by Aneja and Nair in the original 2PPLS. The difference becomes larger for bigger
instances.

• U2PPLS gives the best results for some specific values of parameter L (the number of
initial solutions) and deteriorates if either lower or greater values of L are used. In other
words, the best results are obtained if the optimum balance of the computational effort
dedicated to Phase 1 and Phase 2 is assured.

• In many cases U2PPLS is able to generate similar or better results than MOMAD. How-
ever, for clustered instances MOMAD remains better than U2PPLS. The main difference
between MOMAD and U2PPLS is the perturbation step used in the former algorithm.
This indicates that for this type of instances Lin–Kernighan heuristic is insufficient to
provide high quality initial solutions for PLS, and that the use of perturbation may help
in generating some additional solutions hardly achievable with Lin–Kernighan heuristic
standalone.

• R2PPLS performs worse than U2PPLS.
• U2PPLS+R is for many values of L better that U2PPLS but the best values achieved are

similar to that of U2PPLS. The picture is again different for clustered instances on which
UPPLS+R performs relatively poorly.

The above results support the statement that the original version of 2PPLS did not exploit
fully the power of Lin–Kernighan heuristic stopping the first phase too early. To study it in
more details in Figs. 5, 6 and 7 we show the number of efficient solutions obtained in Phase
1 for a given L , i.e. the number of weight vectors, and thus the number of Lin–Kernighan
runs. We show these results for both uniformly distributed and random weight vectors. One
can see that new efficient solutions are still generated even for relatively large numbers of L ,
which confirms that stopping Phase 1 too early may deteriorate final results. In addition, the
use of random weight vectors in general results in a smaller number of efficient solutions,
which explains worse final results after the second phase.

The average values of all indicators (H, R, D1 and D2) obtained by 2PPLS, U2PPLS,
U2PPLS+R andMOMAD are given in Tables 1 and 2. For U2PPLS and U2PPLS+R we give
the result for only one value of L , the value for which the methods gave best results. These
values of L are reported in brackets. For each instance and each indicator, the best values are
marked in bold.
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We see that the best results are never achieved by 2PPLS and there is no clear winner
among other methods. H, R and D1 usually give very similar ranking, while U2PPLS+R
performs particularly well for D2, i.e. maximum distance from the reference set. It indicates
that U2PPLS+R gives particularly uniform representation of the reference set even if not the
best on average.

We have also indicated in these tables the number of full iterations of PLS performed.
We see that, for most of the instances, the number of iterations of U2PPLS is less than the
number of iterations of 2PPLS, which means that, for a fixed running time, it is better to
spend more times to generate a good initial population than applying PLS until the end and
reaching a Pareto local optimum.
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Table 3 Results of the Mann–Whitney test for D1

2PPLS vs
U2PPLS

2PPLS vs
U2PPLS+R

2PPLS vs
MOMAD

U2PPLS vs
U2PPLS+R

U2PPLS vs
MOMAD

U2PPLS+R
vs MOMAD

KroAB200 ⊖ ⊖ ⊖
⊕

⊖ ⊖

KroAB300 ⊖ ⊖ ⊖ = ⊕ ⊕
KroAB500 ⊖ ⊖ ⊖ = ⊕ ⊕
KroAB750 ⊖ ⊖ ⊖

⊕ ⊕ ⊕
KroAB1000 ⊖ ⊖ ⊖

⊕ ⊕ ⊕
EuclAB300 ⊖ ⊖ ⊖ = ⊕ ⊕
EuclAB500 ⊖ ⊖ ⊖ = ⊕ ⊕
RdAB300 ⊖ ⊖ = ⊕ ⊕ ⊕
RdAB500 ⊖ ⊖ ⊖ = ⊕ ⊕
MixedAB300 ⊖ ⊖ ⊖ = ⊕ ⊕
MixedAB500 ⊖ ⊖ ⊖

⊕ ⊕ ⊕
ClusteredAB300 ⊖ ⊖ ⊖

⊕
⊖ ⊖

ClusteredAB500 ⊖ ⊖ ⊖
⊕ = ⊖

To take into account the variations in the results of the algorithms, we have tested if the
observed differences are statistically significant. As we do not know the distributions of the
indicators, we carried out the non-parametric statistical test of Mann–Whitney (Ferguson
1967).

The results of the comparison with D1 and R indicators are given in Tables 3 and 4
respectively. For each pair of methods we test the following hypothesis: “the two samples
come from identical populations” for the D1 or R indicator on a given instance. When the
hypothesis is satisfied, the result “=” is indicated (no differences between the indicators of
the algorithms). When the hypothesis is not satisfied, the sign “⊕” indicates that the first
method is better and “�” vice versa. The level of risk of the test has been fixed to 5%. As in
Tables 1 and 2 for U2PPLS, U2PPLS+R we use the value of L for which the methods gave
best results.

One can see that 2PPLS is significantly worse than the other methods in all cases. For the
other methods the results are inconclusive with slight advantage of U2PPLS. For example,
U2PPLS is better than MOMAD in 18 cases, indifferent in 4 cases, and worse in 4 cases.

These results are only for a single value of L forwhich a givenmethod gave the best results.
However, we could have obtained the same conclusions with other values of L . Indeed, in
Table 5, we show that the values of L for which U2PPLS or U2PPLS+R can obtain better or
equal results than MOMAD, for the R and D1 indicators (according to the Mann–Whitney
test) are quite large: for example, for the KroAB500 instance, using a value of L between
550 and 1150 for U2PPLS, or between 300 and 1150 for U2PPLS+R, allows to obtain better
results than MOMAD. On the other hand there are few instances for which the results of
MOMAD are always better.

Furthermore, although Liangjun et al. (2014) do not give much details about how the
parameters ofMOMADwere set, we can expect that they were based on at least some prelim-
inary experiments to assure good performance. In particular the value of L used in MOMAD
depends on the size of the instance. Moreover the authors present additional experiments for
a selected instance showing that the value of L has a strong influence on the obtained results.
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Table 4 Results of the Mann–Whitney test for R

2PPLS vs
U2PPLS

2PPLS vs
U2PPLS+R

2PPLS vs
MOMAD

U2PPLS vs
U2PPLS+R

U2PPLS vs
MOMAD

U2PPLS+R
vs MOMAD

KroAB200 ⊖ ⊖ ⊖
⊕

⊖ ⊖

KroAB300 ⊖ ⊖ ⊖
⊕ = ⊖

KroAB500 ⊖ ⊖ ⊖
⊕ ⊕ ⊕

KroAB750 ⊖ ⊖ ⊖
⊕ ⊕ ⊕

KroAB1000 ⊖ ⊖ ⊖
⊕ ⊕ ⊕

EuclAB300 ⊖ ⊖ ⊖
⊕ ⊕ ⊕

EuclAB500 ⊖ ⊖ ⊖
⊕ ⊕ ⊕

RdAB300 ⊖ ⊖ ⊖
⊕ ⊕ ⊕

RdAB500 ⊖ ⊖ ⊖ = ⊕ ⊕
MixedAB300 ⊖ ⊖ ⊖

⊕ = =
MixedAB500 ⊖ ⊖ ⊖

⊕ ⊕ ⊕
ClusteredAB300 ⊖ ⊖ ⊖

⊕
⊖ ⊖

ClusteredAB500 ⊖ ⊖ ⊖
⊕ = ⊖

Table 5 Intervals values of L for which U2PPLS and U2PPLS+R are better or equal than MOMAD for the
D1 and R indicators

U2PPLS vs MOMAD U2PPLS+R vs MOMAD

D1 R D1 R

KroAB200 ∅ ∅ ∅ ∅
KroAB300 [650] [550] [550] ∅
KroAB500 [550, 1150] [550, 1150] [300, 1100] [300, 1100]

KroAB750 [800, 1600] [800, 1600] [800, 1400] [800, 1400]

KroAB1000 [700, 1600] [700, 1600] [700, 1300] [700, 1300]

EuclAB300 [450, 850] [450, 850] [200, 850] [400, 850]

EuclAB500 [700, 1100] [700, 1100] [400, 1100] [600, 1000]

RdAB300 [350, 450] [350, 450] [275, 400] [250, 425]

RdAB500 [600, 800] [600, 800] [400, 800] [400, 800]

MixedAB300 [500, 650] [500, 650] [350, 600] [500, 600]

MixedAB500 [500, 900] [500, 900] [300, 900] [400, 900]

ClusteredAB300 ∅ ∅ ∅ ∅
ClusteredAB500 [900] ∅ [500] ∅

6 Conclusions and perspectives

We have presented two new versions of two-phase Pareto local search for the biobjective
traveling salesman problem—U2PPLS and U2PPLS+R. The methods are relatively simple
(which we believe is an advantage), yet they improve previous results for bTSP obtained with
the original version 2PPLS and are at least comparable to state-of-the-art results generated
byMOMADmethod. The newmethods are motivated by the idea of finding a proper balance
between the effort of search towards and along Pareto front. In fact, we have shown that
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the original version of 2PPLS did not exploit fully the power of Lin–Kernighan heuristic in
the first phase, and that by increasing the number of Lin–Kernighan runs even at the cost of
running time dedicated to PLS better results can be obtained.

Although the computational experiment has been performed for bTSP only, we expect
that the general idea is applicable also for other problems where very good heuristics exists
for optimization of weighted sum of objectives. Thus tests on other multiobjective problems
is natural direction for further research.

In the proposed methods the number of weight vectors L is a free parameter that has to be
appropriately set. Please note, that it is a typical situation in metaheuristics that usually have
some parameters that have to be tuned to a particular case. In order to decrease sensitivity with
respect to this parameter we have proposed U2PPLS+R method which performs relatively
well for a wide range of L and achieves the best results similar to U2PPLS. An interesting
direction for further research is to propose a systematic method to adapt the parameter L for
a given instance e.g. in the spirit of Battiti et al. (2008).

Another interesting direction is to consider more smooth shift from the search towards
and along Pareto front. In U2PPLS the shift from the search towards Pareto front by single
objective heuristics to the search along Pareto front by PLS is immediate. U2PPLS+Rmakes
more smooth shift, since it still generates some new solutions by the single objective heuristic
during the run of PLS. Another possibility would be to use some additional methodwith some
intermediate properties from the point of view search towards and along Pareto front, between
initial phase and PLS.
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