Tile Packing Tomography is NP-hard

Cocoon 2010

Marek Chrobak
Riverside
USA
(Polish)

Christoph Dürr
Palaiseau
France
(German)

Flavio Guíñez
Vancouver
Canada
(Chilean)

Antoni Lozano
Barcelona
Spain
(Catalan)

Nguyễn Kim Thắng
Aarhus
Denmark
(Vietnamese)
Tables in an open space office

- disjoint copies of the same shape
- same orientation
Non-intrusive measurement

- the office is an \(n \times m \) grid
- tables are aligned on the grid
- Measurement results in projection vectors \(r, s \)
- such that \(r_i \) is the number of grid cells of row \(i \) covered by a table (tile)
- same for columns
Equivalent measurement

- alternative measurement (equivalent up to base change):
 - mark a cell in the tile
 - projections count only marks
• A tile is a connected set of grid points

• Given a tile T, dimensions n,m and projections r, s

• does there exist a binary matrix M

• with \(r_i = \sum_j M_{ij} \), \(s_j = \sum_i M_{ij} \)

• and for \(M_{ij} = 1 \), \(M_{i'j'} = 1 \), the tiles \(T+(i,j) \) and \(T+(i',j') \) are disjoint?
A tile is a connected set of grid points.

Given a tile \(T \), dimensions \(n,m \) and projections \(r, s \),

does there exist a binary matrix \(M \) with

\[
\begin{align*}
 r_i & = \sum_j M_{ij}, \\
 s_j & = \sum_i M_{ij}
\end{align*}
\]

and for \(M_{ij} = 1 \), \(M_{i'j'} = 1 \), the tiles \(T+(i,j) \) and \(T+(i',j') \) are disjoint?
The tiling reconstruction pb

- A tile is a connected set of grid points.
- Given a tile T, dimensions n,m and projections r, s
- does there exist a binary matrix M
- with $r_i = \sum_j M_{ij}$, $s_j = \sum_i M_{ij}$
- and for $M_{ij} = 1$, $M_{i'j'} = 1$, the tiles $T^+(i,j)$ and $T^+(i',j')$ are disjoint?
Complexity depends on T

- When the tile T is a bar, the problem is polynomial.
- [this paper] When the tile T is not a bar, the problem is NP-hard.

- [Ryser’63] Characterize r,c such that there is a binary matrix with projections r,c.
- [Picouleau’01] [D, Gol, Rap, Rémi a’03] greedy algorithm to reconstruct tilings with bars.
- [Chrobak, Couperous, D, Woeginger’03] NP-hardness for some very specific tiles.
3-color tomography

- 3 colors \{R,G,B\}
- given projections \(r^c, s^c\) for every \(c \in \{R,G,B\}\)
- is there a matrix \(M \in \{R,G,B\}^{n \times m}\)
- such that \(r^c_i = \# \{j : M_{ij} = c\}\)
- and \(s^c_j = \# \{i : M_{ij} = c\}\)
- for every \(c \in \{R,G,B\}\)
- \([D, Guíñez, Matamala’09]\) 3-color tomography is NP-hard
Reduction from 3-color tomography

- Reduce from 3-color tomography to tiling tomography

- Choose a block of fixed dimension $k \times l$

- Choose 3 tilings of the block

\[\begin{align*}
M^R & = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \\
M^G & = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \\
M^B & = \begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\end{align*} \]
Reduction from 3-color tomography

- **[in]** instance \(r^c, s^c \) (\(c \in \{R,G,B\} \)) of the 3-color tomography problem for an \(n \times m \) grid

- **[out]** instance \(r, s \) of the tiling tomography problem for an \(nk \times ml \) grid such that projections of block row \(i \) are

\[
r_i^R \cdot r_i^R + r_i^G \cdot r_i^G + r_i^Y \cdot r_i^Y
\]

(same for columns)
Requirements

• (R1) the row projections r^R, r^G, r^Y have to be affine linear independent

• (R2) Let M be a solution to the tiling tomography instance obtained by the reduction. Then every block in M is one of M^R, M^G, M^Y (or projection-equivalent)
Implications

- (R2) ⇒ we can associate a color to every block in M

- and replace every block by a single colored cell (contract)

- (R1) ⇒ the obtained grid has the required projections, since any vector
 \[n_R \cdot r^R + n_G \cdot r^G + n_Y \cdot r^Y \]
 for \(n_R + n_G + n_Y = n \)
 is uniquely decomposed into \(n_R, n_G, n_Y \).
Apply this technique

- We divide the tiles into four classes
- and have a different construction for every class
- Fix a maximal conflicting vector \((p,q)\)
- Choose smallest \(a>0\) such that \((ap,0)\) is not conflicting
- Choose smallest \(b>0\) such that \((0,bq)\) is not conflicting
- Cases are broken according to \(a,b,p,q\)
Example case $b=1$, $a \geq 2$

- We choose k,l large enough
- block tilings are as depicted, (R1) ok
We have to show:

(R2) Let M be a solution to the tiling tomography instance obtained by the reduction. Then every block in M is one of M^R, M^G, M^Y (or projection-equivalent).

There might be another block tiling in the solution, namely M^A.

It counts like M^R in the column projections and like M^G in the row projections.

Since total row projections equal total column projections this is impossible.
• What about approximation algorithms?

• What about complete tilings, for a constant number of tiles?