Preemptive Multi-Machine Scheduling of Equal-Length Jobs to Minimize the Average Flow Time

Philippe Baptiste1 Marek Chrobak2 Christoph Dürr3 Francis Sourd4

1CNRS and LIX, Ecole Polytechnique, Palaiseau
2CS dep, University of California, Riverside
3LRI, University of Paris-11
4CNRS and LIP6, University of Paris-6

MAPSP, 2005
The Problem $P|r_j;\text{pmtn; } p_j = p| \sum C_j$

- **input**: $n, p, r_1, \ldots, r_n, m$
- **means**: n jobs with equal processing time p
- **job j cannot be scheduled before its release time** r_j
- **m parallel identical machines**
- **output**: a preemptive schedule with minimizes average completion time
related problems

- For $m = 2$ solvable in time $O(n \log n)$
 [Herrbach, Leung, 1990]

- For arbitrary processing times p_j it is binary NP-hard
 [Du, Leung, Young, 1990]

- ... it is even unary NP-hard [Brucker, Kravchenko, 2004]

this problem

- [Brucker, Kravchenko, 2004] showed it can be solved with:
 - Sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - Solve a linear program of size $O(n^3)$
 - Do some preprocessing in $O(n^3)$

- We show it can be solved directly with a linear program of size $O(nm)$
For $m = 2$, the problem is solvable in time $O(n \log n)$ [Herrbach, Leung, 1990]. For arbitrary processing times p_j, it is binary NP-hard [Du, Leung, Young, 1990]. Even unary NP-hard [Brucker, Kravchenko, 2004].

For this problem, [Brucker, Kravchenko, 2004] showed it can be solved with:

- Sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
- Solve a linear program of size $O(n^3)$
- Do some preprocessing in $O(n^3)$

We show it can be solved directly with a linear program of size $O(nm)$.
related problems

- for \(m = 2 \) solvable in time \(O(n \log n) \) [Herrbach, Leung, 1990]
- for arbitrary processing times \(p_j \) it is binary NP-hard [Du, Leung, Young, 1990]
- \(\ldots \) it is even unary NP-hard [Brucker, Kravchenko, 2004]

this problem

- [Brucker, Kravchenko, 2004] showed it can be solved with
 - sort jobs \(r_1 \leq \ldots \leq r_n \) in \(O(n \log n) \)
 - solve a linear program of size \(O(n^3) \)
 - do some preprocessing in \(O(n^3) \)
- we show it can be solved directly with a linear program of size \(O(nm) \)
related problems

- for $m = 2$ solvable in time $O(n \log n)$ [Herrbach, Leung, 1990]
- for arbitrary processing times p_j it is binary NP-hard [Du, Leung, Young, 1990]
- ... it is even unary NP-hard [Brucker, Kravchenko, 2004]

this problem

- [Brucker, Kravchenko, 2004] showed it can be solved with
 - sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - solve a linear program of size $O(n^3)$
 - do some preprocessing in $O(n^3)$
- we show it can be solved directly with a linear program of size $O(nm)$
related problems

- for $m = 2$ solvable in time $O(n \log n)$ [Herrbach, Leung, 1990]
- for arbitrary processing times p_j it is binary NP-hard [Du, Leung, Young, 1990]
- ... it is even unary NP-hard [Brucker, Kravchenko, 2004]

this problem

- [Brucker, Kravchenko, 2004] showed it can be solved with
 - sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - solve a linear program of size $O(n^3)$
 - do some preprocessing in $O(n^3)$
- we show it can be solved directly with a linear program of size $O(nm)$
Definition of a normal schedule

- every job is scheduled in at most one interval on every machine
- and the intervals are ordered by machines
- the executions on a fixed machine are ordered by jobs (suppose \(r_1 \leq \ldots \leq r_n \))

Our main Theorem

Every schedule can be put in normal form without increasing \(\sum C_j \)
The resulting linear program

\[
\begin{align*}
\text{minimize} & \quad \sum_{j=1}^{n} C_{j,1} \\
\text{subject to} & \quad -S_{j,m} \leq -r_j \quad j = 1, \ldots, n \\
& \quad \sum_{q} (C_{j,q} - S_{j,q}) = p \quad j = 1, \ldots, n \\
& \quad S_{j,q} - C_{j,q} \leq 0 \quad j = 1, \ldots, n, \quad q = 1, \ldots, m \\
& \quad C_{j,q} - S_{j,q-1} \leq 0 \quad j = 1, \ldots, n, \quad q = 2, \ldots, m \\
& \quad C_{j,q} - S_{j+1,q} \leq 0 \quad j = 1, \ldots, n - 1, \quad q = 1, \ldots, m
\end{align*}
\]
Let I be the time set where exactly one of the jobs i, j ($r_i \leq r_j$) is scheduled.

The reduction of i, j consists of scheduling only i in the first half of I and only j in the second half.

$C_i + C_j$ does not increase.
Let I be the time set where exactly one of the jobs i, j ($r_i \leq r_j$) is scheduled.

The reduction of i, j consists of scheduling only i in the first half of I and only j in the second half.

$C_i + C_j$ does not increase.
Simplifying Assumption

- All start-, preemption- and completion-times are integer.
- In every slot \([t, t + 1)\) 1st job is assigned to 1st machine, 2nd job to 2nd machine...
Proof

Lemma After a finite number of reductions any schedule is in normal form.

Proof

- The discrete vector \((H(1), \ldots, H(n))\) decreases lexicographically with each reduction, where \(H(i) = \text{sum of integer times } t \text{ where } i \text{ is scheduled}\).
- If the number of jobs \(\leq j\) scheduled in \([t, t + 1)\) for \(t \leq r_j\) increases, then a reduction is possible.
More related problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P2_{</td>
<td>r_j;\ \text{pmtn}; \ p_j = p</td>
</tr>
<tr>
<td>$P_{</td>
<td>r_j; \ \text{pmtn}; \ p_j = p</td>
</tr>
<tr>
<td>$P_{</td>
<td>r_j; \ \text{pmtn}</td>
</tr>
<tr>
<td>$P_{</td>
<td>\ \text{pmtn}; \ p_j = p</td>
</tr>
<tr>
<td>$P_{</td>
<td>r_j; \ p_j = p</td>
</tr>
<tr>
<td>$1_{</td>
<td>r_j; \ \text{pmtn}; \ p_j = p</td>
</tr>
<tr>
<td>$P_{</td>
<td>r_j; \ \text{pmtn}; \ p_j = p</td>
</tr>
</tbody>
</table>