Online Scheduling of Bounded Length Jobs to Maximize Throughput

Christoph Dürr (F-Paris) Nguyen Kim Thang (F-Evry) Łukasz Jeż (PL-Wrocław)

September 23, 2011
The problem

- Every time slot a new product is produced
- It cannot be stored, must be immediately delivered
- Customers arrive on-line. Customer i arrives at time r_i, and promises to pay w_i Euros if he gets p_i units before deadline d_i (all integers)
- Goal: maximize revenue
A network motivation

- Consider a gateway between an TCP/IP network and an ATM network
- IP packets arrive (r_i) with a weight ($w_i=$QoS), a deadline (d_i) and a length ($p_i \leq 1500$)
- ATM cells have fixed small size (48)
- IP packets that want to transit over the ATM network split into unit size cells.
- Goal: maximize total weight of packets sent on-time
A scheduling problem $1|\text{online-} r_i; \text{pmtn}| \sum w_i(1 - U_i)$

- A single machine
- Jobs arrive on-line at release times
- One has to find a preemptive schedule which maximizes total weight of jobs completed on-time
- The competitive ratio of an algorithm A is $\max_I \OPT(I)/A(I)$, over all instances I
- The competitive ratio of the problem is $\min_A \text{ratio}(A)$, over all on-line algorithms A
What is known?

General model

- Randomized ratio is unbounded
 \[[\text{Koren, Shasha'94}] \]
- For \(p_i \leq k \), the deterministic ratio is
 \(\Theta(k / \log k) \).
- For \(p_i = k \), the deterministic ratio is at most 5

Model \(w_i = p_i \) (maximize processor usage)

- Offline problem is NP-hard \([\text{bin packing}]\)
- Deterministic ratio is 4 \([\text{Lawler'90}, [\text{Baruah..'94}]\)

Unweighted model \(w_i = 1 \)

- Offline problem is polynomial \([\text{Lawler'90}]\)
- Randomized ratio is at most 130000
 \([\text{Kalyanasundaram, Pruhs'03}]\)
- For \(p_i \leq k \), deterministic ratio is
 \(\Omega(\log k / \log \log k) \) and \(O(\log k) \)
For the unweighted case deterministic ratio is $O(\log k)$

Available job

Job j is available for the algorithm at time t, if j is not completed, and $d_j - t$ does not exceed remaining work for j.

Shortest Remaining Processing Time (SRPT) is the online algorithm which executes always the available job with smallest remaining work.

Let $k = \max p_j$, and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}$.

Theorem

SRPT is $2H_k$-competitif.
A charging scheme

- Fix arbitrary instance. Consider schedules produced both by algorithm and by adversary.
- We denote the p_j units of a job by $(j, p_j), \ldots, (j, 2), (j, 1)$ where in (j, b), b stands for remaining work at moment of execution.
- Every unit (j, b) scheduled by the adversary is charged $1/p_j$ to some job scheduled by the algorithm.
- Every job scheduled by the algorithm will get at most $2H_k$ charges in total.
Crucial observations

If SRPT schedules \((i, a)\) at time \(t\),

1. then if \(a > 1\), at time \(t + 1\) SPRT will schedule some \((i', a')\) with \(a' < a\) since \((i, a - 1)\) is candidate.

2. SRPT will complete some job between \(t\) and \(t + a\).

\[
\begin{array}{c|c|c}
 & \quad t & t+a \\
 \cdots & \cdots & \cdots \\
 i,a & i',a' & \cdots
\end{array}
\]
Type of charges

Let \((j, b)\) be a unit scheduled by adversary at time \(t\). Let \((i', a)\) the unit scheduled by algorithm at the same time. We call \(1/a\) the capacity of this unit.

1. if the capacity is sufficient, we charge \((j, b)\) to the next job completed by the algorithm from \(t\) on.

2. is insufficient or algorithm is \textit{idle}, then let \(s\) be the last moment when \(j\) was available for the algorithm. We charge \((j, b)\) to the next job completed by the algorithm from \(t\) on.
Bound type 1 charges

Let i be a job completed by the algorithm at time t.
Let s be the smallest time such that $[s, t)$ has no idle time, nor completions except i.
i receives all type 1 charges through units in $[s, t)$.
i receives at most $1/a$ through (i', a).
The capacities of units in $[s, t)$ are strictly decreasing.
Therefore $t - s \leq k$, and the total type 1 charge is at most H_k.
Bound type 2 charges

Let i be a job completed by the algorithm at time t.
Let J be the set of units type 2 charged to i.
Every $(j, b) \in J$ is scheduled not before t.
Key observation: The ℓ-th unit $(j, b) \in J$ satisfies $d_j \geq t + \ell$, and therefore $p_j \geq \ell$ since at t j is not available anymore.

So

$$
\sum_{(j, b) \in J} \frac{1}{p_j} \leq \sum_{\ell=1}^{k} \frac{1}{\ell} = H_k.
$$
general model (w_j arbitrary)

- No deterministic algorithm is better than $k/\ln k$-competitif.
- Schedule the available job j which maximizes the Smith-ratio w_j/q_j, where q_j is the remaining work j. This is $O(k)$-competitif.
- There is a more subtle algorithm with ratio $O(k/\ln k)$ where the hidden constant converges to 1 when k goes to ∞.
<table>
<thead>
<tr>
<th></th>
<th>offline</th>
<th>randomized</th>
<th>deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>general model</td>
<td>unbounded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bounded proc. time</td>
<td>[knapsack]</td>
<td>$O(\log k)$</td>
<td>$O(k/\log k)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(\sqrt{\log k/\log \log k})$</td>
<td>$\Omega(k/\log k)$</td>
</tr>
<tr>
<td>bounded proc. time</td>
<td>$O(n^4)$</td>
<td>≤ 130000</td>
<td>$O(\log k)$</td>
</tr>
<tr>
<td>unit weight</td>
<td></td>
<td></td>
<td>$\Omega(\log k/\log \log k)$</td>
</tr>
<tr>
<td>equal proc. time</td>
<td>$O(n^4)$</td>
<td></td>
<td>$\in [2.598, 5]$</td>
</tr>
<tr>
<td>unit weight</td>
<td></td>
<td></td>
<td>$\rightarrow 1$</td>
</tr>
<tr>
<td>unit proc. time</td>
<td>[matching]</td>
<td></td>
<td>$\in [1.618, 1.83]$</td>
</tr>
</tbody>
</table>