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Abstract. The idea to recombine two or more search points into a new solution is one of the main
design principles of evolutionary computation (EC). Its usefulness in the combinatorial optimization
context, however, is subject to a highly controversial discussion between EC practitioners and the
broader Computer Science research community. While the former, naturally, report significant speedups
procured by crossover, the belief that sexual reproduction cannot advance the search for high-quality
solutions seems common, for example, amongst theoretical computer scientists. Examples that help
understand the role of crossover in combinatorial optimization are needed to promote an intensified
discussion on this subject.
We contribute with this work an example of a crossover-based genetic algorithm (GA) that provably
outperforms any mutation-based black-box heuristic on a classic benchmark problem. The appeal of
our examples lies in its simplicity: the proof of the result uses standard mathematical techniques and
can be taught in a basic algorithms lecture.
Our theoretical result is complemented by an empirical evaluation, which demonstrates that the supe-
riority of the GA holds already for quite small problem instances.
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1 Introduction

Evolutionary Computation (EC) borrows inspiration from phenomena observed in biological evolution pro-
cesses. One of the fundamental design principles of EC is crossover; i.e., the recombination of two or more
candidate solutions into one or several offspring. EC practitioners frequently report that crossover (which is
also referred to as sexual reproduction) brings significant performance gains. This belief, however, is often
challenged in the broader Computer Science (CS) community, and in particular in the subarea of Theoretical
CS, yielding to very generally formulated statements that crossover cannot be beneficial in combinatorial
optimization. As an example we mention a quote by Christos Papadimitriou and colleagues, who formulated
the claim that “Simulated annealing tends to work quite well, but genetic algorithms do not”.3

In light of this discrepancy, it has been one of the main focus question in the theory of EC community to
contribute to a better understanding of when and why crossover-based algorithms can perform better than
purely mutation-based ones. It seems quite notable that only very few examples exist where such an effect
can be rigorously proven.

1.1 Selected Theoretical Results on the Benefits of Crossover

We summarize a few selected results that prove an advantage of crossover in the discrete black-box opti-
mization context, and refer the interested reader to [15] for an extended discussion. The first work observing
a benefit of crossover-based GAs over a standard evolutionary algorithm (EA) dates back to [10], where
so-called Jump functions are considered, in which algorithms are required to “jump” a gap between local
and global optima. As discussed in [2,15], several follow-up works introduced similarly artificial problems to
demonstrate an advantage of crossover. The first classical combinatorial example for which recombination

3 See, for example, here: https://www.simonsfoundation.org/2010/05/18/why-sex/.
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could be shown to be beneficial was presented in [7]. In this work, a problem-tailored crossover operation
was shown to be advantageous for the all-pairs-shortest-path problem.

These theoretical results, albeit being very appealing, do not answer the question of how beneficial the
use of crossover is in standard EAs, or for standard benchmark problems. Starting with the work [13],
the quest to prove advantages of crossover for simple hill-climbing tasks has recently taken considerable
momentum. Sudholt proved that a greedy (µ + 1) GA with a diversity mechanism that avoids duplicates
needs (1 + o(1)) e2n lnn ≈ 1.359n lnn+ o(n lnn) function evaluations, on average, to optimize OneMax; the
combinatorial optimization problem asking to minimize the Hamming distance to an unknown bit string
z ∈ {0, 1}n. This runtime is better by a factor of two than the expected (1+o(1))en lnn optimization time of
any evolutionary algorithm using only standard bit mutation [14,16]. Sudholt also proved that the expected
runtime of the algorithm can be further reduced to approximately 1.19n lnn + o(n lnn) by increasing the
mutation rate from 1/n to (1 +

√
5)/(2n).

The results of [13] were generalized to less greedy (µ+ 1) GAs in [15] and to GAs avoiding the diversity
mechanism in [2]. All these works show an advantage of crossover-based (µ + 1) GAs over evolutionary
algorithms using standard bit mutation. They do not, however, beat the average performance of another very
common randomized optimization heuristic, Randomized Local Search (RLS). The expected optimization
time of RLS on OneMax is n ln(n/2) + γn ± o(1), with γ ≈ 0.5772156649 being the EulerMascheroni
constant [3]. For a more convincing argument in favor of crossover, one would like to have an example for
a crossover-based heuristic that outperforms not only mutation-based EAs but also RLS as well as any
other so-called unary unbiased black-box algorithm. The notion of a unary unbiased black-box algorithm was
introduced in [12] as a model for purely mutation-based algorithms. While it was already proven in [12] that
any unary unbiased black-box algorithm has an expected optimization time on OneMax of order at least
n log n, a precise lower bound, which is n ln(n)− cn± o(n) for a constant c between 0.2539 and 0.2665, could
be shown only recently [6]. The expected optimization times proven in [2, 13, 15] are all by a multiplicative
factor of at least 1.19 larger than this bound.

In [8] it was shown that binary unbiased black-box algorithms exist that achieve a linear expected
optimization time on OneMax. While this can be seen as a proof in favor of recombination, the algorithm
is highly problem-tailored. A more appealing example rigorously proving an advantage of crossover over
any unary unbiased black-box algorithm has been presented in [5]. The (1 + (λ, λ)) GA uses only well-
known and widely applied building blocks from the EC literature (standard bit mutation, (biased) uniform
crossover, and elitist selection), but recombines them in a new way: by first mutating a best so-far solution
through standard bit mutation, the crossover operator becomes a “repair mechanism”. For suitable parameter
settings, the (1 + (λ, λ)) GA can achieve linear expected optimization time on OneMax [4, 5], and, by the
lower bounds of [6, 12], therefore scales much more favorably with the problem dimension than any unary
unbiased black-box algorithm.

1.2 Our Results

In this work, we revisit the analysis of the greedy (µ + 1) GA with diversity mechanism presented in [13].
Following the suggestion made in [1] we take a more implementation-aware perspective on this algorithm, in
that we do not charge function evaluations for search points that are identical to one of their direct ancestors.
Put differently, we try to avoid creating such offspring, as they do not provide any new information about
the problem instance at hand. In the absence of noise, this is how one would implement the (µ+ λ) GA for
all practical purposes, cf. [1] for a discussion. We note that for the two variation operators employed by the
(µ + λ) GA, standard bit mutation and uniform crossover, tracking whether or not an offspring equals one
of its parents is very simple and comes at almost no cost.

Quite surprisingly, we show that this simple modification yields performance bounds that are strictly
better than the above-mentioned n ln(n)−cn±o(n) lower bound valid for all unary unbiased black-box algo-
rithms. More precisely, we show that, for a suitably chosen mutation rate p, the modified greedy (µ+ 1) GA
with diversity mechanism achieves an 0.851..n ln(n) + o(n log n) expected optimization time on OneMax.
The proof of this result is surprisingly simple, and can be taught in an undergraduate course.
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2 The Greedy (µ+ 1) GA

We present the crossover-based genetic algorithm (GA) for which we will prove in Section 3 that it outper-
forms any mutation-based algorithm on the Hamming distance problem OneMax. The algorithm is a (mild)
modification of an algorithm previously suggested for the study of the effectiveness of crossover: the greedy
(µ + 1) GA presented in [13]. We present the original algorithm in Section 2.1, motivate our modifications
in Section 2.2, and describe the modified greedy (µ+ 1) GA in Section 2.3.

2.1 The Original Greedy (µ+ 1) GA

The greedy (µ+ 1) GA proposed by Sudholt in [13] is Algorithm 1 with lines 5 to 8 replaced by “Sample `
from Bin(n, p)”. It maintains a population P of µ individuals. P is initialized by sampling µ search points
independently and uniformly at random. Each iteration consists of two steps; a crossover step and a mutation
step. In the crossover step two parents x and y are selected uniformly at random (with replacement) from
those individuals u ∈ P for which f(u) = maxv∈P f(v) holds. From these two search points an offspring z′

is created by uniform crossover cross(x, y), which samples a new search point by choosing, independently
for every position i ∈ [n] and uniformly at random, whether to copy the entry of the first or the second
argument. In the mutation phase this offspring z′ is modified by standard bit mutation, which flips each bit
independently with some probability p ∈ (0, 1). The so-created offspring z is evaluated. If z /∈ P and its
fitness is at least as good as minv∈P f(v), it replaces the worst individual in the population, ties broken
uniformly at random. The requirement z /∈ P is a so-called diversity mechanism.

From this description, we easily observe that from the whole population only those with a best-so-far
fitness value are relevant, the others are never selected for reproduction, hence the attribute “greedy” in
the name of this algorithm. When there is only one search point of best-so-far function value, the crossover
simply creates a copy of this search point, and progress has to be made by mutation, while in the case that
at least two different search points with best-so-far fitness exist, there is positive probability that crossover
recombines these into a strictly better solution. Sudholt proved that this probability is large enough for the
greedy (µ+ 1) GA to outperform its mutation-only analog, the (1 + 1) EA. More precisely, it is shown in [13]
that, for µ ≥ 2 and n ≥ 2, the expected optimization time of the greedy (µ+ 1) GA on OneMax, i.e., the
expected number of function evaluations that the algorithm performs until it evaluates for the first time an
optimal solution, is at most

ln(n2p+ n) + 1 + p

p(1− p)n−1(1 + np)
+

8n

(1− p)n
. (1)

As mentioned in the introduction, this bound was later generalized to a less greedy variant of the (µ+1) GA
in [15] and to one avoiding the diversity mechanism in [2]. These generalizations are not relevant to this
present work.

The bound in (1) is by a multiplicative factor of about 1/(1+np) smaller than the expected optimization
time of the (1 + 1) EA. For p = 1/n this factor evaluates to 1/2, showing that for this choice of p the
greedy (µ + 1) GA is about a factor of two faster than the (1 + 1) EA. This advantage can be boosted
by choosing larger mutation rates. In fact, the expression in (1) is minimized for p = (1 +

√
5)/(2n). With

this mutation rate, the expected optimization time of the greedy (µ + 1) GA on OneMax is at most
1.19n lnn+ 35n. This is better than the expected optimization time of the (1 + 1) EA, but worse than the
nHn/2 − 1/2 ≈ n ln(n)− 0.1159n+O(1) expected optimization time of RLS [3].

2.2 Standard Bit Mutation: Theory vs. Practice

When the offspring created in the crossover phase of the greedy (µ + 1) GA equals one of its parents, the
only source for a successful iteration is the standard bit mutation operator applied in the mutation step.
Standard bit mutation is probably the most frequently used variation operator in evolutionary approaches
for the optimization of pseudo-Boolean problems f : {0, 1}n → R. We discuss in this section that most EA

3



Algorithm 1: The greedy (µ + 1) GAmod with mutation probability p for the maximization of a
given function f : {0, 1}n → R.

1 Choose x(1), . . . , x(µ) from {0, 1}n independently and u.a.r. and evaluate them;
2 for t = 1, 2, 3, . . . do
3 Choose x, y ∈ arg maxw∈P f(w) u.a.r. (with replacement);
4 if x 6= y then z′ ← cross(x, y); else z′ ← x;
5 if z′ /∈ {x, y} then
6 Sample ` from Bin(n, p);
7 else
8 Sample ` from Bin>0(n, p);

9 Sample z ← mut`(z
′) and evaluate f(z);

10 if
(
z /∈ P and f(z) ≥ minw∈P f(w)

)
then

11 Choose v ∈ arg minw∈P f(w) u.a.r. and replace v by z;

practitioners do not take the literal definition of standard bit mutation provided above too seriously, and
implement a slightly different variation operator instead.

We start our discussion by observing that for every mutation rate p ∈ (0, 1) the probability that standard
bit mutation merely creates a copy of the parent individual is strictly positive. More precisely, the number
` of bits that are flipped by the standard bit mutation operator follows the binomial distribution Bin(n, p).
That is, for all k ∈ [0..n] := {0, 1, . . . , n} the probability to flip exactly k bits equals

(
n
k

)
pk(1 − p)n−k. For

k = 0 this expression evaluates to (1 − p)n. The evaluation of copies, however, does not provide any new
information about the problem instance f , unless f is a dynamic function or its evaluation is noisy.

The question how to deal with these offspring disunites theoretical and empirical research in evolutionary
computation. While almost all theoretical runtime results for evolutionary algorithms charge the algorithms
for evaluating such copies, the practitioner would typically not call the function evaluation for such offspring.
Two strategies are commonly used in practice. The first one, which is the most common one for +-selection
strategies, avoids to generate copies in the first place, by sampling from a conditional distribution that
assigns probability 0 to sampling the parent individual. An alternative strategy, that is more reasonable
for comma-selection, does include sampled copies of the parent individual in the offspring population, but
does not evaluate these as their function values are already known. When the performance measure is based
on counting function evaluations, both aforementioned strategies coincide for the (µ + 1)-type algorithms
considered in this work.

We now describe how the creation of copies can be avoided. To this end, we first observe that a reasonable
implementation of standard bit mutation would first sample the number ` of bits to flip, and then apply the
mut` variation operator that flips ` pairwise different, uniformly selected bits. As discussed above, in the
literal interpretation of standard bit mutation the number ` is distributed according to Bin(n, p). If we do
not want to create copies, we only need to change the distribution that we sample from. The most common
implementation of standard bit mutation uses a resampling strategy in which ` is sampled from Bin(n, p)
until a strictly positive value is sampled for the first time. Thus, effectively, in this resampling approach,
the mutation strength ` is sampled from the conditional binomial distribution Bin>0(n, p), which assigns to
every k ∈ [n] a probability of Bin(n, p)(k)/

∑∞
i=1 Bin(n, p)(i) =

(
n
k

)
pk(1− p)n−k/(1− (1− p)n).

2.3 The Modified Greedy (µ+ 1) GA

We apply the resampling idea to the greedy (µ+1) GA. To motivate this, we briefly discuss the circumstances
under which the solution created in the crossover phase is identical to one of its parents. Note that only in
this case we need to enforce that at least one bit is flipped by the standard bit mutation, since in the other
case, the crossover may have successfully created a new solution that is at least as good as its parents. When
the population contains only one search point of current-best function value, this one is (deterministically)
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selected twice for the crossover step, so that the crossover operator cannot create diversity. However, even
in the presence of k > 1 different search points of best-so far fitness, the probability to choose the same one
twice equals 1/k.4 Furthermore, it can happen that the parents are not identical, but the offspring copies
one of them. This event is also not unlikely: if we denote by d the Hamming distance of the two selected
parents x and y, the probability that the offspring created by the uniform crossover cross equals either x or
y is 1/2d−1. The situation d = H(x, y) = 2 occurs quite frequently, resulting in a 1/2 probability that the
crossover reproduces one of the two parents. In all these cases, the chances to make progress rely exclusively
on the mutation phase.

Tracking whether or not the offspring created by crossover equals one of its parents is very simple, and
can be done efficiently while creating it. As argued above, in such an event we would like to avoid that
the mutation operator chooses mutation strength ` = 0. In line with common implementations of standard
bit mutation, we use the re-sampling strategy described in Section 2.2. With this re-sampling strategy, the
greedy (µ+ 1) GA becomes Algorithm 1, which we refer to as the greedy (µ+ 1) GAmod.

3 Theoretical Investigation

Following very closely the proof of Theorem 2 in [13], it is not difficult to obtain the following runtime
statement, which is the main result of this paper.

Theorem 1. For n ≥ 2 and µ ≥ 2, the expected optimization time of the greedy (µ+1) GAmod with mutation
rate p on any OneMax function Omu : {0, 1}n → [0..n], x 7→ |{i ∈ [n] | xi = ui}| is at most

(1− (1− p)n)(ln(n2p+ n) + 1 + p)

p(1− p)n−1(1 + np)
+

8n

(1− p)n
. (2)

Before presenting the proof for Theorem 1, we first discuss its consequences, and why it shows that the
greedy (µ+ 1) GAmod can hillclimb faster than any unary unbiased black-box algorithm.

For mutation rate p = c/n, the upper bound (2) evaluates to

1− (1− c/n)n

c(1− c/n)n−1(1 + c)
n ln(n) +Θ(n).

For large n, we can approximate the factor B(c, n) := 1−(1−c/n)n
c(1−c/n)n−1(1+c) in this expression by A(c) :=

1−exp(−c)
c exp(−c)(1+c) . Evaluating B(1, n) and minimizing A(c) with respect to c gives the following result.

Corollary 1. For µ ≥ 2 the expected optimization time of the greedy (µ + 1) GAmod with mutation rate
p = 1/n on OneMax is at most (1+o(1)) e−12 n ln(n) ≈ 0.859140914n ln(n)+o(n lnn) and for p = 0.773581/n
it is at most (1 + o(1))0.850953n ln(n).

By the result of [6], these two bounds are about 14 to 15 % smaller than the expected optimization time
of any unary unbiased black-box algorithm. As far as we know this is the first time that a “classic” GA is
shown to outperform RLS on OneMax—the only other evolutionary algorithm that we are aware of is the
(1 + (λ, λ)) GA with fitness-based [5] and self-adjusting [4] population size.

To study the convergence towards the mutation rate used in Corollary 1, we summarize in the following
table how the value of c that minimizes B(c, n) changes with the problem dimension n. We also provide
a numerical evaluation of the factor B(1, n), the multiplicative factor of the n lnn term for the greedy
(µ+ 1) GAmod with mutation rate p = 1/n.

4 See Section 3 for a discussion of the fact that sampling the parent without replacement improves the expected
optimization time of this algorithm on OneMax. We do not apply this modified parent selection rule in the greedy
(µ+ 1) GAmod to highlight that the main improvement stems from the modified mutation step.
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n 10 100 500 1 000 5 000
c 0.783953 0.774577 0.773778 0.773679 0.773599
B(c, n) 0.831839 0.859091 0.850581 0.850766 0.850915
B(1, n) 0.840587 0.857340 0.858782 0.858961 0.859105

Proof (of Theorem 1). Following [13], we say that the algorithm is on fitness level i if the best individual in
the population has function value i. Like Sudholt, for each i, we distinguish two cases.

Case i.1: there is exactly one search point x ∈ P with f(x) = i and for all y ∈ P \ {x} it holds
that f(y) < i. In this situation, the offspring z is the outcome of standard bit mutation on x. The algorithm
leaves this situation when (a) f(z) > i or (b) f(z) = f(x) and z 6= x. The probability for (a) to happen is
at least (n − i)p(1 − p)n−1/(1 − (1 − p)n), since this is the probability that exactly one of the zero bits is
flipped in the mutation phase. Likewise, the probability of event (b) is i(n− i)p2(1− p)n−2/(1− (1− p)n) ≥
i(n− i)p2(1−p)n−1/(1− (1−p)n). Once the algorithm has left case i.1 it never returns to it. This is ensured
by the diversity mechanism, which allows to include z in the population only if it isn’t there yet (line 10 of
Algorithm 1). The total expected time spent in the cases i.1, i = 0, . . . , n− 1 is therefore at most

1− (1− p)n

p(1− p)n−1
n−1∑
i=0

1

(n− i)(1 + ip)
.

The same algebraic computations as in [13] show that this expression can be bounded from above by

(1− (1− p)n)(ln(pn2 + n) + 1 + p)

p(1− p)n−1(1 + np)
.

Case i.2: there are at least two different search points x and y with f(x) = f(y) = i and,
for all w ∈ P, f(w) ≤ i holds. For this case we can use exactly the same arguments as Sudholt does for
the original greedy (µ + 1) GA: the probability to sample two different parents x 6= y in the crossover step
is at least 1/2. Assuming that we are in this situation, it is not difficult to show that the probability that
the intermediate offspring z′ satisfies f(z′) > i is at least 1/4, cf. [13] for an explicit proof. Conditioning
on this event, we certainly have z′ /∈ {x, y} so that the mutation strength ` is therefore sampled from the
unconditional binomial distribution Bin(n, p). The probability to sample ` = 0 equals (1 − p)n. Putting
everything together, we see that, starting in case i.2, the total probability to leave fitness level i is at least
(1− p)n/8, so that the total expected time spent in the cases i.2, i = 0, . . . , n− 1 is at most 8n/(1− p)n. ut

The reader familiar with the notion of k-ary unbiased black-box algorithms may wonder if the greedy
(µ + 1) GAmod is unbiased, and of which arity it is. We note without proof that it is unbiased, but that
care has to be taken when computing the arity of this algorithm. Line 10 of Algorithm 1 seems to suggest
that the arity of this algorithm is µ + 1. Note however, that in particular for the case µ = 2, only a mild
modification of Algorithm 1 is needed to obtain a binary unbiased algorithm whose expected optimization
time on OneMax also satisfies the bound stated in Theorem 1. This not being the main focus of the present
work (rather are we interested in a simple example of a “classic” GA that can be proven to outperform any
unary unbiased black-box optimization algorithm), we defer the details of this alternative to an extended
journal version of this work.

Additional Performance Gains. It is beyond the scope of this work to analyze the tightness of the
upper bounds proven in Theorem 1, and additional gains may be possible by choosing different values for p.
We also remark that RLSopt (described below), the RLS-variant from [6] achieving the (up to lower order
term) optimal runtime among all unary unbiased black-box algorithms on OneMax, uses fitness-dependent
mutation rates. It is possible (and likely) that the greedy (µ+ 1) GAmod, as well, could profit further from
choosing its mutation rate in such an adaptive way. We have to leave this question for future work.

One may wonder why we have not abbreviated line 4 as “z′ ← cross(x, y)”, regardless of whether or not
x = y. This would of course give the same algorithm. Our variant, however, makes it more explicit that it
may happen that x = y is sampled in line 3. As discussed above, when k := | arg maxw∈P f(w)| = 1, this is
always the case. But also for k > 1 this situation can occur, because the sampling in line 3 uses replacement.
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If we focus, for a moment on the situation µ = 2, then one might argue that it is more “natural” to do a
crossover of both parents in line 4, provided that they have the same function value. More generally, one
would want to enforce x 6= y whenever k > 1. This modification does not affect the cases i.1 in the proof of
Theorem 1, but it does increase the success probability of the cases i.2 by a multiplicative factor of 2. With
this observation, we easily see that the additive 8n

(1−p)n term in the runtime bounds for the (µ+ 1) GA and

the greedy (µ+ 1) GAmod with mutation rate p can be replaced by 4n
(1−p)n .

4 Empirical Evaluation

Complementing the theoretical results above, we now investigate the performance of the greedy (2+1) GAmod

on OneMax by empirical means, to shed light on its behavior for small dimensions. As we shall see, our
experiments confirm a considerable advantage of the greedy (2+1) GAmod over RLS already for small problem
dimensions. We use this section also to compare the greedy (2 + 1) GAmod with another crossover-based
genetic algorithm, the self-adjusting (1 + (λ, λ)) GA suggested in [5]. For a fair comparison, we modify the
(1 + (λ, λ)) GA in the same spirit in which we have modified the greedy (µ+ 1) GA. Finally, we also provide
a comparison with RLSopt, the RLS variant that in each iteration chooses the drift-maximizing mutation
strength. We briefly describe these two algorithms before we present our empirical findings.

Modifying the (1+(λ, λ)) GA. It was shown in [4] that the (1+(λ, λ)) GA achieves a linear optimization
time on OneMax when equipped with a self-adjusting choice of the offspring population size. No static
parameter choice can achieve this performance [4] and experimental results presented in [5] suggest that
already for n ≥ 1 500 the self-adjusting choice of the population size outperforms any static one.

For reasons of space, we cannot discuss the algorithm in great detail and refer the reader to [4] for a
discussion of the self-adjusting (1 + (λ, λ)) GA. In line with our modifications of the greedy (µ+ 1) GA, we
change the original (1 + (λ, λ)) GA by choosing the mutation strength ` from the conditional Bin>0(n, p)
distribution (instead of sampling from Bin(n, p)) and by not evaluating those offspring created in the crossover
phase that are identical to one of their two direct parents.

As in the original self-adjusting (1+(λ, λ)) GA we use a mutation rate of p = λ/n, a crossover bias c = 1/λ,
and update strength F = 3/2. With this parametrization, the probability of the original (1 + (λ, λ)) GA to
sample a mutation strength ` = 0 equals (1 − λ/n)n ≈ exp(−λ). A choice of ` = 0 results in an entirely
useless iteration that costs 2λ function evaluations. Note further that particularly in the beginning (λ is
close to one) but also in the last steps of the optimization process (λ approaches

√
n), the probability that

an offspring created from cross1/λ(x, y) equals x or y is fairly large. It is therefore not surprising that our
modified (1 + (λ, λ)) GAmod indeed corresponds to how practitioners have implemented the (1 + (λ, λ)) GA
for an empirical evaluation [9].

None of our modifications can influence the asymptotic order of the optimization time, since the linear
performance of the original (1 + (λ, λ)) GA is already asymptotically optimal [4]. What we do observe,
however, is that our modifications have a non-trivial impact on the leading constant.

RLS with Fitness-Dependent Mutation Strengths. RLSopt is the (1+1)-type heuristic which in
every iteration creates one offspring y from the parent x by flipping a number of bits that is chosen to
maximize the expected progress towards the optimum. y replaces x if it is at least good; i.e., if f(y) ≥ f(x)
holds.

It was proven in [6] that this drift maximizer is (almost) optimal among all unary unbiased black-box
algorithms. More precisely, it is shown that the performance of any unary unbiased algorithm can be better
by at most an additive o(n) term.

To run RLSopt in our experiments, we have computed, for every tested dimension n and every fitness
value v ∈ [0..n− 1] the value `∗n,v that maximizes the expected drift

B(n, v, `) := E[max{Om(y)−Om(x), 0} | Om(x) = v, y = mut`(x)]

=
∑̀

i=d`/2e

(
n−v
i

)(
v
`−i
)

(2i− `)(
n
`

) , (3)
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Fig. 1: Average runtimes for 100 independent runs of the respective algorithms on OneMax for different
problem sizes n.

i.e., we do not work with the approximation proposed in [6] but the original drift maximizer.
Experimental Results. Figure 1 shows experimental data for the performance of the aforementioned

algorithms on OneMax, for n ranging from 500 to 5 000. The (1+(λ, λ)) GA and the (1+(λ, λ)) GAmod use
self-adjusting λ values, and for the greedy (2 + 1) GAmod we use mutation rate 0.773581/n and the variant
that recombines both parents if their function values are identical. In the reported ranges, the expected
performance of the original greedy (2 + 1) GA from [13] with mutation rate p = (1 +

√
5)/(2n) is very

similar to that of the self-adjusting (1 + (λ, λ)) GA (cf. Figure 8 in [5]); we do not plot these data points to
avoid an overloaded plot. Detailed statistical information for Figure 1 can be found in Table 1. We observe
that both the (1 + (λ, λ)) GAmod as well as the greedy (2 + 1) GAmod are better than RLSopt already for
quite small problem sizes. We also observe that, in line with the theoretical bounds, the advantage of the
(1 + (λ, λ)) GAmod over the greedy (2 + 1) GAmod and over RLSopt increases with the problem size.

5 Conclusions

We have presented a simple example of a crossover-based heuristic that performs better than any unary
unbiased black-box algorithm on the OneMax benchmark function. The mathematical proof is surprisingly
easy, and raises the question why the result has been previously overlooked, despite the considerable attention
that the usefulness of crossover question has received in the runtime analysis community.

The main idea behind our proof is a more careful performance evaluation. We therefore believe that the
discussion how to measure the efficiency of an evolutionary algorithm, which had previously been suggested
in [11], should be taken more seriously, in particular in light of the significant increase in the precision of
state-of-the-art runtime results. We believe this question to be particularly relevant for the comparison of
evolutionary algorithms with other standard optimization approaches like local search.

The proof of Theorem 1 does not invoke any involved mathematical machinery, and can be taught to
undergraduate students. We hope that this makes it an appealing example for the discussion on the role of
sexual reproduction in combinatorial optimization.
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Percentile StdDev/
n Algorithm 2 25 50 75 98 Mean Mean

500 (1 + (λ, λ)) GA 4082 4532 4746 4986 5748 4791 8.8%
500 RLSopt 1885 2481 2842 3309 4725 2964 21.6%
500 greedy (2 + 1) GAmod 1951 2422 2816 3343 4317 2928 21.4%
500 (1 + (λ, λ)) GAmod 2752 3065 3280 3499 3929 3300 9.4%

1000 (1 + (λ, λ)) GA 8238 9206 9684 10222 11120 9754 8.1%
1000 RLSopt 4575 5616 6187 7071 9160 6398 18.5%
1000 greedy (2 + 1) GAmod 4252 5503 6090 6700 8753 6200 17.0%
1000 (1 + (λ, λ)) GAmod 5855 6378 6716 6993 8060 6771 8.3%

1500 (1 + (λ, λ)) GA 13134 14162 14604 15234 16816 14767 6.2%
1500 RLSopt 7965 9621 10397 11220 14980 10678 16.1%
1500 greedy (2 + 1) GAmod 7219 8872 9554 10422 11911 9642 12.0%
1500 (1 + (λ, λ)) GAmod 8985 9522 10058 10446 11742 10054 6.9%

2000 (1 + (λ, λ)) GA 17502 18960 19604 20384 22240 19749 5.7%
2000 RLSopt 10993 12958 14424 15796 20085 14749 15.7%
2000 greedy (2 + 1) GAmod 10791 12179 13393 14963 20410 13856 16.4%
2000 (1 + (λ, λ)) GAmod 12146 13139 13511 13940 15477 13638 6.4%

2500 (1 + (λ, λ)) GA 21828 24024 24558 25234 26874 24614 4.2%
2500 RLSopt 13553 16655 18658 19803 23815 18596 13.2%
2500 greedy (2 + 1) GAmod 13511 16081 17212 18755 23870 17703 13.7%
2500 (1 + (λ, λ)) GAmod 15289 16549 17076 17673 19275 17134 5.8%

3000 (1 + (λ, λ)) GA 27300 28716 29596 30430 32788 29736 4.9%
3000 RLSopt 16569 20386 22534 25156 31789 22968 15.8%
3000 greedy (2 + 1) GAmod 17493 19601 21447 23292 30849 22081 15.4%
3000 (1 + (λ, λ)) GAmod 18860 19906 20549 21108 23088 20641 5.1%

3500 (1 + (λ, λ)) GA 31888 33516 34624 35264 37190 34544 3.8%
3500 RLSopt 19860 23569 26262 28687 36960 26801 16.1%
3500 greedy (2 + 1) GAmod 19598 22805 25340 27811 36918 25925 15.6%
3500 (1 + (λ, λ)) GAmod 21858 23468 24119 24933 27131 24276 5.0%

4000 (1 + (λ, λ)) GA 36648 38758 39848 40390 43014 39733 3.8%
4000 RLSopt 25114 28487 30448 33653 43626 31512 16.3%
4000 greedy (2 + 1) GAmod 23175 26752 28673 31389 36222 29372 12.3%
4000 (1 + (λ, λ)) GAmod 25106 26564 27466 28139 30187 27496 4.7%

4500 (1 + (λ, λ)) GA 41698 43520 44434 45298 48550 44664 3.9%
4500 RLSopt 28047 32449 34814 38433 52178 36040 15.9%
4500 greedy (2 + 1) GAmod 27140 30578 32795 35492 43957 33682 12.7%
4500 (1 + (λ, λ)) GAmod 28326 29927 30900 31551 33991 30988 4.8%

5000 (1 + (λ, λ)) GA 46568 48378 49468 50912 54402 49857 4.9%
5000 RLSopt 31760 36541 39523 44214 57874 41537 16.3%
5000 greedy (2 + 1) GAmod 30441 34279 38186 40793 50552 38437 13.3%
5000 (1 + (λ, λ)) GAmod 32234 33514 34348 35436 38117 34666 4.4%

Table 1: Statistical Details for Figure 1
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